

POTENTIALS AND IMPACTS OF SELECTED NEGATIVE EMISSION TECHNOLOGIES IN LIGHT OF GREEN PROCESS ENGINEERING

Maria Victoria P. Migo-Sumagang^{1,2,a}, Raymond R. Tan^{1,b}, Allan N. Soriano^{1,c}, Kathleen B. Aviso^{1,d,*}

¹Chemical Engineering Department, De La Salle University, 0922 Manila, Philippines

²Department of Chemical Engineering, University of Philippines Los Baños, 4031 Laguna, Philippines ^amaria_victoria_migo-sumagang@dlsu.edu.ph, ^braymond.tan@dlsu.edu.ph, ^callan.soriano@dlsu.edu.ph, ^dkathleen.aviso@dlsu.edu.ph

AFFORESTATION/

REFORESTATION (AR)

ENHANCED

WEATHERING (EW)

SOIL CARBON

SEQUESTRATION (SCS)

ABSTRACT

Climate models show that negative emission technologies (NETs) are required to achieve the temperature increase limits set in the Paris Agreement. NETs remove and store carbon away from the atmosphere. Various NETs have been proposed in the literature, and their potential capacities, benefits, limitations, impacts, and costs are continuously being established. Green process engineering (GPE) promotes sustainability, pollution reduction, and human health risk minimization. NETs implementation must follow the principles of green engineering. This paper aims to evaluate the features of selected NETs in light of green process engineering. It was found that all the NETs have both positive and

WETLAND

RESTORATION (WR)

negative impacts on the Green Engineering (GE) principles. It is recommended to integrate the GE principles during the planning and large-scale implementation of NETs for sustainability.

THE ALL SHE NO. COMPANY

METHODOLOGY

Selected NETs (AR, WR, SCS, BC, EW, BECCS, and DAC) were evaluated in terms of their different features using literature data. The impacts of the nets were assessed based on the nine and twelve versions of the Green Engineering (GE) Principles using identifiers:

Smith, P., Haszeldine, R. S., & Smith, S. M. (2016). Preliminary assessment of the potential for, and limitations to, terrestrial negative

emission technologies in the UK. Environmental Science: Processes and Impacts, 18(11), 1400–1405.

INTRODUCTION

- IPCC climate models show that negative emission technologies (NETs) are needed to limit global warming (Smith et al., 2016)
- NETs sequester carbon from the atmosphere and store it in the soil, underground, etc. (McLaren, 2012)
- process engineering (GPE) emphasizes Green • sustainable technological designs that minimizes impact on the environment and human health
- NETs have been evaluated according to the UN SDGs (Smith et al., 2019), but no studies have been found **BIOCHAR (BC)** relating NETs with GE principles.
 - Evaluates the various features of selected NETs and identifies the green engineering principles positively and negatively DIRECT AIR impacted by each NET. CAPTURE (DAC)

BIOENERGY WITH CARBON CAPTURE AND STORAGE (BECCS)

RESULTS AND DISCUSSIONS

Legend

	ingineering (GE) Principles using identiliers:							Legend
	Nine Principles		Twelve Principles					Positively impacts GE princip
N1	Engineer processes and products holistically, use systems analysis, and integrate environmental impact assessment tools.	T1	Inherent rather than circumstantial	~	NETs AR	Positively Impacted GE Principles N2, N5, T11, T12	Negatively Impacted GE Principles N5, T2, T7	Positively and negatively impacts GE Principle Negatively impacts GE princi
N2	Conserve and improve natural ecosystems while protecting human health and well- being.	T2	Prevention instead of treatment		WR SCS	N2, N5, T11, T12 N2	N5, T2, T7 N5, T2, T7	AR
N3	Use life-cycle thinking in all engineering activities.	Т3	Design for separation	(4	BC EW	N2, N6, T12 N2, N8, T7	N5, T7 N2, N5, T2	N2
N4	Ensure that all material and energy inputs and outputs are as inherently safe and benign as possible.	T4	Maximize efficiency		BECCS DAC	N6, N8, T7, T12 N8, T7	N5, T4 T2, T4	"Conserve and improve
N5	Minimize depletion of natural resources.	T5	Output-pulled versus input-pushed					natural
N6	Strive to prevent waste.	T6	Conserve complexity	-				ecosystems"
N7	Develop and apply engineering solutions, while being cognizant of local geography, aspirations, and cultures.	T7	Durability rather than immortality		0.00	AR		AR BC SCS
N8	Create engineering solutions beyond current or dominant technologies; improve, innovate, and invent (technologies) to achieve sustainability.	Τ8	Meet need, minimize excess	BE		N5 WR "Minimize epletion of	BECCS "Rene rathe	ewable er than eting"
N9	Actively engage communities and stakeholders in development of engineering solutions	Т9	Minimize material diversity	E	:w r	natural resources" SCS		BC DAC T2
		T10	Integrate material and energy flows			ВС		"Prevention
		T11	Design for commercial "afterlife"			DC		instead of
	CONCLUSIONS	T12	Renewable rather than depleting			DAC	AR WR	treatment" EW SCS
1.1	CAMER MUMBER ALL CARRON	11.1	I A A A A A A A A A A A A A A A A A A A	-		DAC		
•	All the NETs have both positive	and	negative impacts on the GE	1			T7	
1.1	principles.			1	10.1	"Du	rability	BECCS
•	AR, WR, SCS, BC, and EW positi	vely ir	mpact principle N2. EW also			rathe	er than	
	negatively impacts N2.						ortality" SC	IS N8
	Almost all NETs negatively impact	princ	iple N5	190				"Create
	It is recommended to integrat	•						engineering solutions
•				-		EW	BC	beyond

Smith, P., Adams, J., Beerling, D. J., et al. (2019). Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annual Review of Environment and Resources, 44, 255–286. Background images are under the creative commons license