

POLYANILINE-COATED CORN STOVER BIOMASS AS ADSORBENT FOR METHYL ORANGE REMOVAL

Rea B. Hachac^{1,a}, Jewel A. Capunitan^{1,b,*}, Marvin U. Herrera^{2,c}, Rowena B. Carpio^{1,d}, and Veronica P. Migo^{1,e}

¹Department of Chemical Engineering, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, Philippines 4031 ²Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines 4031 ^arbhachac@up.edu.ph, ^bjacapunitan@up.edu.ph, ^cmuherrera@up.edu.ph, ^drbcarpio@up.edu.ph, ^evpmigo@up.edu.ph

INTRODUCTION

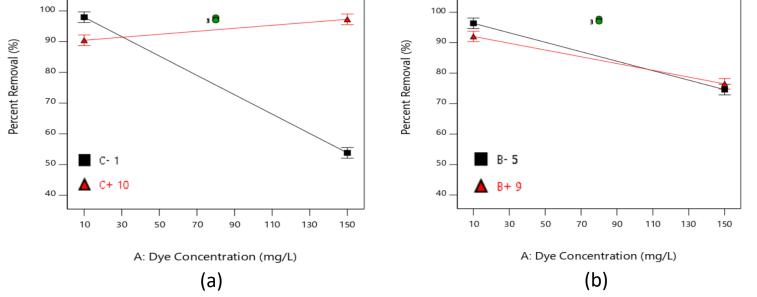
- Corn stover, a lignocellulosic biomass, consists of corn cobs, stalks, leaves and husks, is one of the top agricultural residues in the Philippines (Go et al., 2018), with an approximate generation of about 1.27 million metric tons in 2018.
- The performance of biomass as adsorbents can be further enhanced through various modification techniques (Abdolali, et.al, 2014). Polyaniline (PANI), a conductive polymer, is used in coating adsorbents due to its stability, high conductivity, and feasibility (Rasmussen, 2017).
- This study evaluated the potential of polyaniline-coated corn stover biomass as an alternative adsorbent in the removal of methyl orange from aqueous solution.
- The effects of pH, adsorbent dosage, and initial methyl orange concentration and their interactions on methyl orange removal were determined via a parametric study employing two-level factorial design of experiment.

RESULTS AND DISCUSSIONS

 Significant factors affecting %MO removal: initial dye concentration (A), adsorbent loading (C), initial dye concentration-adsorbent loading (AC) interaction, and initial dye concentration-pH (AB) interaction

Interaction		Interaction		
110 —	C: Adsorbent Loading (g/L)	110	В: рН	

METHODOLOGY


Figure 1. Ground corn stover.

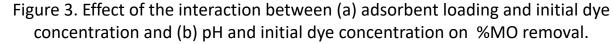
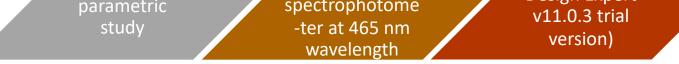

Figure 2. Corn stover biomass in mesh cloth (a) before and (b) after the coating cycle.

Table 1. Lower and upper limit values of the parameters for the 2³ factorial experiment.

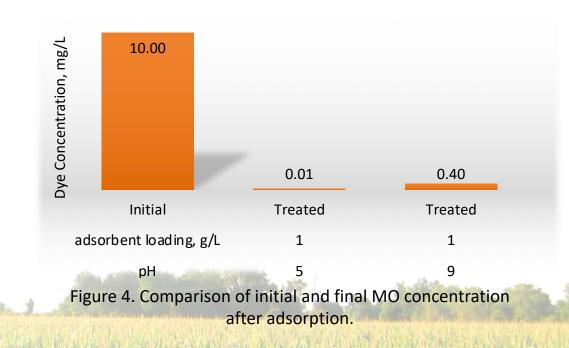
PARAMETERS	MINIMUM VALUE	MAXIMUM
рН	5	9
Initial methyl orange concentration (mg/L)	10	150
Adsorbent concentration (g/L)	1	10

Equilibrium time determination (2 hrs) and	Determination of MO concentration using Vis	Data analysis through ANOVA (Stat-Ease	
narametric	spectrophotome	Design Expert	



- At high adsorbent loading, increasing initial dye concentration increased %MO removal: higher driving force and enhanced diffusion of the dye (Eljiedi et al., 2017).
- But at low adsorbent loading, %MO removal decreased with increasing initial dye concentration: saturation limit of the adsorbent surface and aggregation between adsorbent particles (Darwish et al., 2018).
- At low initial dye concentration, higher %MO removal at pH 5: enhanced interaction between the protonated adsorbent surface and the anionic dye particles.
- At high initial dye concentration, no significant difference in %MO removal between pH 5 and 9: enough quantity of dye particles to overcome the competition with -OH molecules (Darwish et al., 2018).

CONCLUSIONS


行人、リールイスに行行なると認識などの必要になる。

- Higher %MO removal can be obtained at lower initial dye concentration, although higher removal may be obtained even with a higher initial dye concentration if the adsorbent loading is increased.
- The polyaniline-coated corn stover was found to be an effective adsorbent for the removal of methyl orange dye from aqueous solution, providing an alternative method for the utilization of this abundant agricultural residue.

Table 2. Comparison of the %MO removal with some adsorbents.

PARAMETER	PANI-coated Corn Stover	Dragon Fruit Foliage (Haddadian et.al,	PANI-coated Kapok fiber paper (Lacuesta, et.al,
		2013)	2018)
MO Removal, %	96.0-99.9	80	97
рН	5 or 9	6	Not stated
Adsorbent Loading, g/L	1	1.4	0.47
Initial Dye Conc'n, mg/L	10	50	25
Contact time, hr	2	1	6

REFERENCES:

- Go, A., Conag, A., Igdon, R., Toledo, A., & Malila, J. (2019). Potentials of agricultural and agro-industrial crop residues for the displacement of fossil fuels: A Philippine context. Energy Strategy Reviews, 23(2019) 100-113. doi: https://doi.org/10.1016/j.esr.2018.12.010.
- Abdolali, A., Guo, W.S., Ngo, N.H., Chen, S.S, Nguyen, N.C., Tung, K.L. (2014). Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresource Technology.
- Eljiedi, A.A.A., Kamari, A. (2017). Removal of methyl orange and methylene blue dyes from aqueous solution using lala clam (*Orbicularia rbiculate*) shell. American Institute of Physics. doi: 10.1063/1.4983899
- Darwish, A., Rashad, M., & Al-Aoh, H. (2018). Methyl orange adsorption comparison on nanoparticles: Isotherm, kinetics, and thermodynamic studies. Dyes and Pigments. doi: 10.1016/j.dyepig.2018.08.045
- Haddadian, Z., Shavandi, M., Abidin, Z., Fakhru'l-razi, A., & Ishmail, M. (2013). Removal methyl orange from aqueous solutions using dragon fruit (Hylocereusundatus) foliage. chemical science transactions, 2013, 2(3), 900-910. doi: 10.7598/cst2013.439.
- Lacuesta, A., Herrera, M., Manalo, R., & Balela, M.D. (2018). Fabrication of kapok paper-zinc oxide-polyaniline hybrid nanocomposite for methyl orange removal. Surface and Coatings Technology, 350, 971-976. doi: https://doi.org/10.1016/j.surfcoat.2018.03.043.

Rasmussen, S. (2017). The early history of polyaniline: Discovery and origins. Substantia 1(2): 99-109. doi: 10.13128/substantia-30.
Tareq, R., Akter, N., & Azam, S. (2019). Chapter 10 – Biochars and biochar composites: Low-cost adsorbents for environmental remediation. Biochars from Biomass and Waste, 169-209. doi: https://doi.org/10.1016/B978-0-12-811729-3.00010-8